A Parent's Guide to Maths at Starcross Primary School Year 5

The way Maths is taught in primary schools may seem to have changed considerably since you yourself were in the classroom. With the introduction of a new National Curriculum in 2014, some more complicated concepts have been introduced and a much deeper understanding of what is taught is now necessary.

From starting in Foundation, all the way through to Year Six, your child will follow a progressive scheme of learning that will build on their previous knowledge and adapt known methods and images to ensure their working becomes more efficient as they work with larger numbers.

This guide is designed to support you to understand the methods that are being taught in the classroom on a year group basis and the understanding that your child will be gaining. We provide the children with images to match the concrete tools they may be using to complete maths problems with the aim to be able to remove the concrete depictions and replace them with pictorial representations by the end of KS2.

It is however very important to recognise that although a new method may be introduced to your child as they progress through the school, if they find it more difficult to grasp, they will always be supported to continue using their most efficient method whilst being provided with plenty of opportunities to practise the new (more effective) technique. It is very important that your child understands the workings of each method, not simply a mechanical means to answer a question.

Terminology

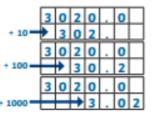
It is important to note the vocabulary we use in school and that you try to embed this in any maths talk at home.

Your child will now be working with much larger numbers (up to 6-digits) as well as beginning to develop an understanding of decimal values.

Millions	Hundred	Ten	Thousands	Hundreds	Tens	Ones	Decimal	Tenths	Hundredths	Thousandths
	Thousands	Thousands					Point			
AA	ЦТЬ	TTh	Th	Ш	Т	0		+	h	+h
M	FIIM	IIN	1 / (•	J	11	171

Addition (+)	Subtraction (-)	Multiplication (x)	Division (÷)	Equals (=)
add	subtract	multiply	divide by	equivalent
more	minus	times	share	same as
plus	less	lots of	divisible by	total
increase	decrease	groups of	group	makes
total	take away	product	divide	balances
sum	fewer	array	share equally	
altogether	leave	multiplied by		
	difference	repeated addition		

Multiplying and Dividing by Multiples of 10


Dividing by 10, 100 or 1,000 Where Answers Are Decimals

When dividing a number by 10, 100 or 1,000 the value of each digit is divided sometimes giving a decimal answer.

3020 ÷ 100 = 30.2

3020 ÷ 1000 = 3.02

Each digit moves the necessary number of place to the right because dividing by 10 decreases the number.

Remember:

1.Keep the digits together. Don't let any 0's jump in!

34 ÷ 10 = 3X.4

2. Round to check:

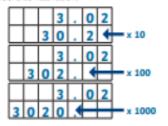
340 ÷ 100 = 3.4 use 300 ÷ 100 = 3 3. Use the inverse to check: 3.4 x 1000 = 3400

Multiplying Decimals by 10, 100 or 1000

When multiplying a decimal number by 10, 100 or 1000, the value of each digit is multiplied.

 $3.02 \times 100 = 302$

3.02 x 1000 = 3020


Remember:

1. Keep the digits together.

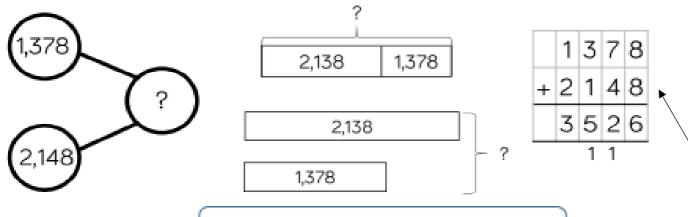
Don't let any 0s jump in!

3.02 x 100 = 300.2 X

Each digit moves the necessary number of places to the left because multiplying by 10, 100 or 1000 increases the number.


```
2. Round to check:

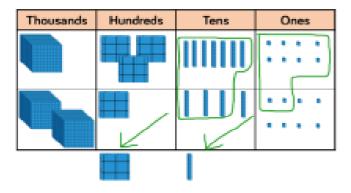
3.02 x 1000 = 3020


use 3 x 1000 = 3000
```

When multiplying and dividing by multiples of 10, the children are taught to move their number up or down the place value chart the correct number of places. They then may need to add 'place holder Os'.

Addition

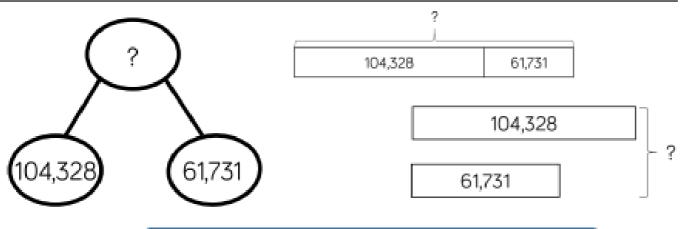
Skill: Add numbers with up to 4 digits


Previous Learning

Your child will have seen a range of representations and worked with numbers up to 4-digits.

They should be able to complete written column addition.

1,378 + 2,148 = 3,526


Place Value Counters

Dienes Apparatus (Base 10)

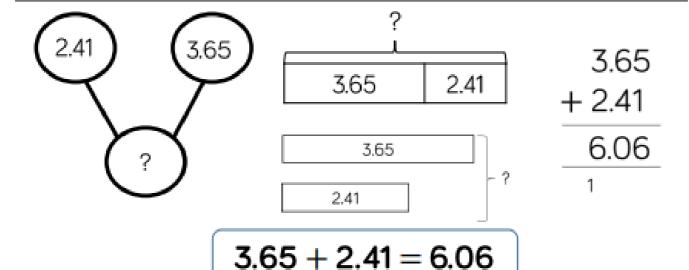
Your child may also like to use more concrete or pictorial representations to support their workings.

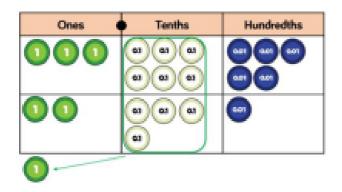
Skill: Add numbers with more than 4 digits

New Learning

The 'bar tool' will be the most common pictorial representation your child will use now.

104,328 + 61,731 = 166,059


Your child will become much more fluent when using the column method and will be able to add much larger numbers.


HTh	TTh	Th	Н	Т	0
			90 90 90	00	
	000	•	88 88 888	000	•


1	0	4	3	2	8
+	6	1	7	3	1
1	6	6	0	5	9
		-4			

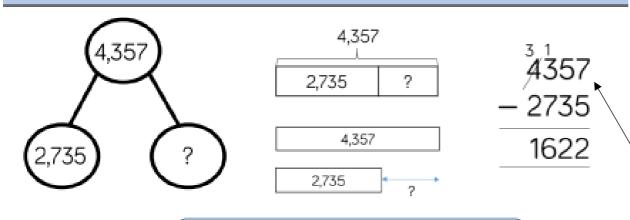
They will be encouraged to use mostly written methods and will rely less and less on pictorial representations.

Skill: Add with up to 3 decimal places

New Learning

Your child will learn to add numbers with up to three decimal places.

Their learning will be linked to problems involving measures and money.


Some children will work on problems with numbers that have different amounts of decimal places and will be expected to use PV columns to correctly 'line them up'.

They will have the opportunity to use place value counters again to support their understanding of the new place value columns that they are exploring.

Subtraction

Skill: Subtract numbers with up to 4 digits

Previous Learning

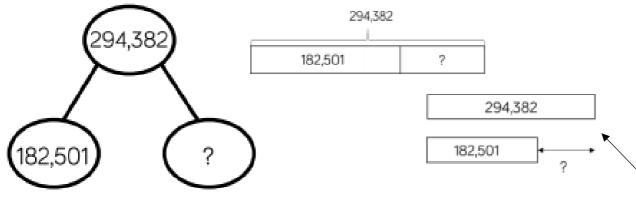
Your child will have seen a range of representations and worked with numbers up to 4-digits.

They should be able to complete written column subtraction.

4,357 –	2,735 =	1,622
---------	---------	-------

Thousands	Hundreds	Tens	Ones
		11444	111

Thousands	Hundreds	Tens	Ones
Ĩ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 Ø Ø	0000 0000


Your child may also like to use more concrete or pictorial representations to support their workings.

Dienes Apparatus (Base 10)

Place Value Counters

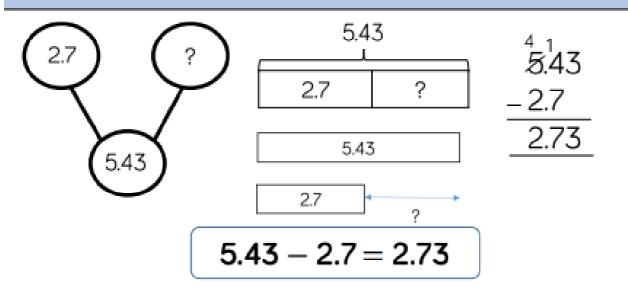
Skill: Subtract numbers with more than 4 digits

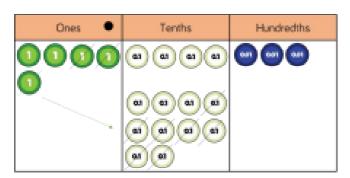
New Learning

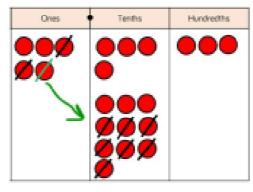
The 'bar tool' will be the most common pictorial representation your child will use now.

This bar very clearly shows the concept of 'difference'.

294,382 - 182,501 = 111,881


HTh	TTh	Th	Н	Т	0
∞ Ø	0,8,8 8,8,8 8,8,8	ØØ Ø	88000 8000 8800	000	o Ø


	2	9	3×	13	8	2
-	1	8	2	5	0	1
	1	1	1	8	8	1


Your child will become much more fluent when using the column method and will be able to subtract much larger numbers.

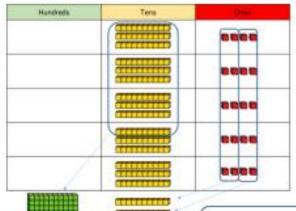
They will be encouraged to use mostly written methods and will rely less and less on pictorial representations.

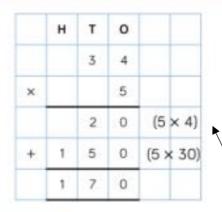
Skill: Subtract with up to 3 decimal places

New Learning

Your child will learn to subtract numbers with up to three decimal places.

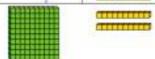
Their learning will be linked to problems involving measures and money.

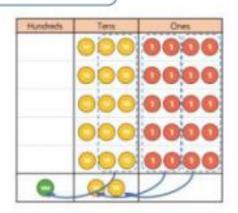

Some children will work on problems with numbers that have different amounts of decimal places and will be expected to use PV columns to correctly 'line them up'.


They will have the opportunity to use place value counters again to support their understanding of the new place value columns that they are exploring.

Multiplication

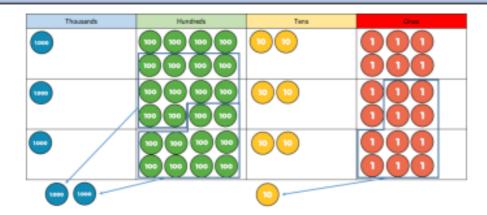
Skill: Multiply 2-digit numbers by 1-digit numbers


Previous Learning


Your child will have again used concrete representations to support their understanding of written methods.

The 'expanded method' of multiplication clearly sets out all of the steps required to solve the problem.

$34 \times 5 = 170$	34	X	5	=	17	0
---------------------	----	---	---	---	----	---


	Н	T	0
		3	4
×			5
	1	7	0
	1	2	

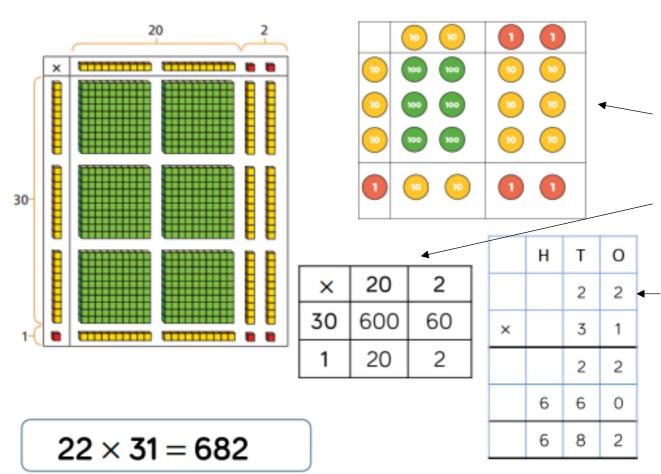
Some children will have confidently moved on to the use of 'short multiplication'.

They will use place value counters to support their understanding of this.

Skill: Multiply 4-digit numbers by 1-digit numbers

$$1,826 \times 3 = 5,478$$

	Th	Н	Т	О
	1	8	2	6
×				3
	5	4	7	8
	2		1	


New Learning

Your child will work with larger numbers and will be encouraged to use 'short multiplication'.

It is still perfectly acceptable for them to be using the 'expanded' method if they find it easier to understand.

Skill: Multiply 2-digit numbers by 2-digit numbers

New Learning

Your child will use the 'area model' to support their understanding of all of the steps required to multiply two two-digit numbers together. They may use dienes or place value counters to support them.

They will then convert this understanding into the use of the 'grid method'.

When your child is confident, they will move onto using the formal written methods.

Again, it is perfectly ok for them to be using the 'expanded' method to keep track of their workings.

They will then use their knowledge and understanding to multiply even larger numbers.

Skill: Multiply 4-digit numbers by 2-digit numbers

New Learning

TTh	Th	Н	Т	0
	2	7	3	9
×			2	8
2	1	9	_ 1	2
_	J	3	7	
5 1	4	7 1	8	0

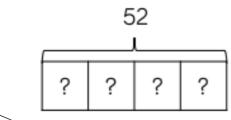
1

If your child is very confident with the formal written methods for multiplication, they may move onto even larger numbers.

They will be shown how to consistently record any exchanges to ensure their workings are clear.

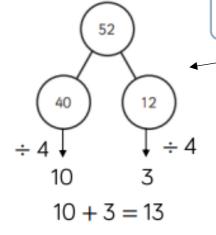
Some children may not visit this method until Year Six.

2,739 × 28 = 76,692


Division

Skill: Divide 2-digits by 1-digit (sharing with exchange)

 $52 \div 4 = 13$


Previous Learning

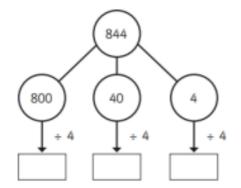
Your child will have learned how to divide two-digit numbers by one-digit numbers using a variety of methods and should have chosen their favourite and most efficient.

Some like to partition and use their times tables knowledge.

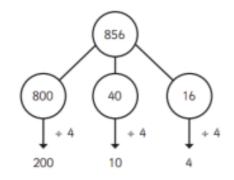
100	000000
Tens	Ones
0	000
0	000
0	000
0	000

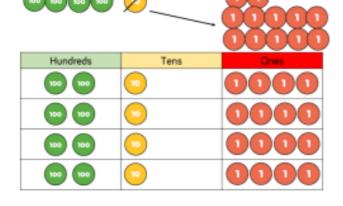
000000

Others will still prefer to use concrete representations.


They will begin to understand remainders.

Skill: Divide 3-digits by 1-digit (sharing)


$844 \div 4 = 211$



н	Т	0
	00	0
@ @	00	0
@ @	00	0
60 60	00	0

$$856 \div 4 = 214$$


Previous Learning

Your child will have been taught to divide larger numbers by one-digit numbers using sharing.

This will be very well supported using concrete representations and they will have begun to learn how to record this pictorially too.

Skill: Divide 3-digits by 1-digit (grouping)

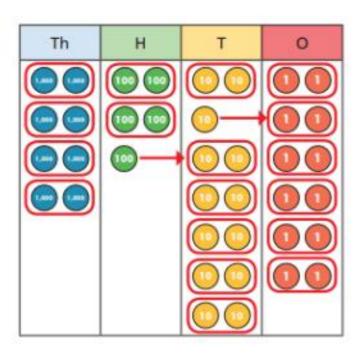
New Learning

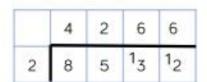
Hundreds Tens Ones

They will use grouping, starting with the largest place value column.

Your child will be taught to consider 'how many groups of four hundreds can we make' and then 'how many groups of four tens can we make'.

Your child will start to use the


'short division or bus stop' method.


Remainders will be seen as ungrouped counters.

 $856 \div 4 = 214$

Skill: Divide 4-digits by 1-digit (grouping)

New Learning

They will practise using this method with increasingly large numbers.

The divisor will never be more than one-digit.

 $8,532 \div 2 = 4,266$